














 

aviation and unmanned aircraft [22], as well as more refined risk 

modelling methods from other relevant studies (see [23] - [28]). 

Other elements which would require further investigation 

include the consideration of pilot response times to pending 

conflicts among remotely piloted UAVs, separation standards 

for the areas of operation, effects of wind and precipitation in 

urban environments on UAV performance, U-space system 

performance, as well as the inclusion of additional risk 

mitigation techniques, such as parachutes. 

VI. CONCLUSIONS 

This paper elaborated on the challenges for defining a 

suitable capacity value for managing U-space UAV flight 

operations in and urban environment. It was found that U-space 

would need to balance airspace demand and capacity based on 

as diverse set of metrics, the most important of which is collision 

risk between UAVs. We applied a methodology which 

incorporates collision risk to define the overall capacity of urban 

U-space airspace. The methodology was tested in a series of 

experiments. Results showed that allowing up to 7 UAVs per 

square km with up to 5500 inhabitants within the same area 

would meet industry specified target safety levels. It was 

however not possible to meet these goals for environments with 

higher population densities, which would require additional 

traffic measures such as flight plan deconfliction and airspace 

structuring. The impact of such measures will be addressed in 

ongoing studies of the DACUS project. 
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